Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Vet Q ; 40(1): 243-249, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-2315258

RESUMO

Several cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection transmitted from human owners to their dogs have recently been reported. The first ever case of SARS-CoV-2 transmission from a human owner to a domestic cat was confirmed on March 27, 2020. A tiger from a zoo in New York, USA, was also reportedly infected with SARS-CoV-2. It is believed that SARS-CoV-2 was transmitted to tigers from their caretakers, who were previously infected with this virus. On May 25, 2020, the Dutch Minister of Agriculture, Nature and Food Quality reported that two employees were infected with SARS-CoV-2 transmitted from minks. These reports have influenced us to perform a comparative analysis among angiotensin-converting enzyme 2 (ACE2) homologous proteins for verifying the conservation of specific protein regions. One of the most conserved peptides is represented by the peptide "353-KGDFR-357 (H. sapiens ACE2 residue numbering), which is located on the surface of the ACE2 molecule and participates in the binding of SARS-CoV-2 spike receptor binding domain (RBD). Multiple sequence alignments of the ACE2 proteins by ClustalW, whereas the three-dimensional structure of its binding region for the spike glycoprotein of SARS-CoV-2 was assessed by means of Spanner, a structural homology modeling pipeline method. In addition, evolutionary phylogenetic tree analysis by ETE3 was used. ACE2 works as a receptor for the SARS-CoV-2 spike glycoprotein between humans, dogs, cats, tigers, minks, and other animals, except for snakes. The three-dimensional structure of the KGDFR hosting protein region involved in direct interactions with SARS-CoV-2 spike RBD of the mink ACE2 appears to form a loop structurally related to the human ACE2 corresponding protein loop, despite of the reduced available protein length (401 residues of the mink ACE2 available sequence vs 805 residues of the human ACE2). The multiple sequence alignments of the ACE2 proteins shows high homology and complete conservation of the five amino acid residues: 353-KGDFR-357 with humans, dogs, cats, tigers, minks, and other animals, except for snakes. Where the information revealed from our examinations can support precision vaccine design and the discovery of antiviral therapeutics, which will accelerate the development of medical countermeasures, the World Health Organization recently reported on the possible risks of reciprocal infections regarding SARS-CoV-2 transmission from animals to humans.


Assuntos
Betacoronavirus/metabolismo , Infecções por Coronavirus/transmissão , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/transmissão , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus/genética , COVID-19 , Gatos , Infecções por Coronavirus/prevenção & controle , Cães , Humanos , Vison , Pandemias/prevenção & controle , Peptidil Dipeptidase A/química , Filogenia , Pneumonia Viral/prevenção & controle , Receptores Virais/química , Receptores Virais/genética , SARS-CoV-2 , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/química , Tigres
2.
Arch Virol ; 168(4): 109, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: covidwho-2252678

RESUMO

We report a high rate of seropositivity against SARS-CoV-2 in wild felines in India. Seropositivity was determined by microneutralization and plaque reduction neutralization assays in captive Asiatic lions, leopards, and Bengal tigers. The rate of seropositivity was positively correlated with that of the incidence in humans, suggesting the occurrence of large spillover events.


Assuntos
COVID-19 , Leões , Panthera , Tigres , Animais , Gatos , Humanos , SARS-CoV-2 , Estudos Retrospectivos , COVID-19/epidemiologia , Índia/epidemiologia
3.
Emerg Infect Dis ; 28(4): 833-836, 2022 04.
Artigo em Inglês | MEDLINE | ID: covidwho-1760184

RESUMO

We report an outbreak of severe acute respiratory syndrome coronavirus 2 involving 3 Malayan tigers (Panthera tigris jacksoni) at a zoo in Tennessee, USA. Investigation identified naturally occurring tiger-to-tiger transmission; genetic sequence change occurred with viral passage. We provide epidemiologic, environmental, and genomic sequencing data for animal and human infections.


Assuntos
COVID-19 , Tigres , Animais , COVID-19/epidemiologia , Surtos de Doenças , Humanos , SARS-CoV-2 , Tennessee/epidemiologia , Tigres/genética
4.
J Zoo Wildl Med ; 52(4): 1224-1228, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-1581615

RESUMO

Natural infection of three captive Malayan tigers (Panthera tigris jacksoni) with SARS-CoV-2 caused mild to moderate symptoms of lethargy, anorexia, and coughing. Each tiger was longitudinally sampled opportunistically via consciously obtained oral, nasal, and/or fecal samples during and after resolution of clinical signs, until 2 wk of negative results were obtained. Persistent shedding of SARS-CoV-2 genetic material was detected via reverse transcription-polymerase chain reaction in feces up to 29 d after initial onset of clinical signs, but not in nasal or oral samples. Tigers became resistant to behavioral training to obtain nasal samples but tolerated longitudinal oral sampling. Serum was obtained from two tigers, and antibody titers revealed a robust antibody response within 9 d of onset of clinical signs, which was sustained for at least 3 mon. The tigers were infected despite the use of masks and gloves by husbandry personnel. No known cause of the outbreak was identified, despite extensive investigational efforts by the regional health department. No forward cross-species transmission was observed in primates housed in nearby enclosures. The increasing regularity of reports of SARS-CoV-2 infection in nondomestic felids warrants further investigations into shedding and immunity.


Assuntos
COVID-19 , Felidae , Tigres , Animais , COVID-19/veterinária , Fezes , SARS-CoV-2
5.
Emerg Infect Dis ; 27(12): 3171-3173, 2021 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1528797

RESUMO

We report infection of 3 Malayan tigers with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.7 (Alpha) variant at a zoologic park in Virginia, USA. All tigers exhibited respiratory signs consistent with SARS-CoV-2 infection. These findings show that tigers are susceptible to infection with the SARS-CoV-2 B.1.1.7 variant.


Assuntos
COVID-19 , Tigres , Animais , Humanos , SARS-CoV-2 , Virginia/epidemiologia
6.
Front Immunol ; 11: 592622, 2020.
Artigo em Inglês | MEDLINE | ID: covidwho-1081192

RESUMO

SARS-CoV-2 causes the ongoing COVID-19 pandemic. Natural SARS-COV-2 infection has been detected in dogs, cats and tigers. However, the symptoms in canines and felines were mild. The underlying mechanisms are unknown. Excessive activation of inflammasome pathways can trigger cytokine storm and severe damage to host. In current study, we performed a comparative genomics study of key components of inflammasome and pyroptosis pathways in dogs, cats and tigers. Cats and tigers do not have AIM2 and NLRP1. Dogs do not contain AIM2, and encode a short form of NLRC4. The activation sites in GSDMB were absent in dogs, cats and tigers, while GSDME activation sites in cats and tigers were abolished. We propose that deficiencies of inflammasome and pyroptosis pathways might provide an evolutionary advantage against SARS-CoV-2 by reducing cytokine storm-induced host damage. Our findings will shed important lights on the mild symptoms in canines and felines infected with SARS-CoV-2.


Assuntos
COVID-19/imunologia , COVID-19/veterinária , Doenças do Gato , Doenças do Cão , Inflamassomos/imunologia , Piroptose/imunologia , Animais , Doenças do Gato/imunologia , Doenças do Gato/virologia , Gatos , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/imunologia , Doenças do Cão/imunologia , Doenças do Cão/virologia , Cães , Genômica , Humanos , Inflamassomos/genética , Piroptose/genética , SARS-CoV-2 , Tigres
7.
J Zoo Wildl Med ; 51(4): 733-744, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: covidwho-1041161

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged as the cause of a global pandemic in 2019-2020. In March 2020, New York City became the epicenter in the United States for the pandemic. On 27 March 2020, a Malayan tiger (Panthera tigris jacksoni) at the Bronx Zoo in New York City developed a cough and wheezing with subsequent inappetence. Over the next week, an additional Malayan tiger and two Amur tigers (Panthera tigris altaica) in the same building and three lions (Panthera leo krugeri) in a separate building also became ill. The index case was anesthetized for diagnostic workup. Physical examination and bloodwork results were unremarkable. Thoracic radiography and ultrasonography revealed a bronchial pattern with peribronchial cuffing and mild lung consolidation with alveolar-interstitial syndrome, respectively. SARS-CoV-2 RNA was identified by real-time, reverse transcriptase PCR (rRT-PCR) on oropharyngeal and nasal swabs and tracheal wash fluid. Cytologic examination of tracheal wash fluid revealed necrosis, and viral RNA was detected in necrotic cells by in situ hybridization, confirming virus-associated tissue damage. SARS-CoV-2 was isolated from the tracheal wash fluid of the index case, as well as the feces from one Amur tiger and one lion. Fecal viral RNA shedding was confirmed in all seven clinical cases and an asymptomatic Amur tiger. Respiratory signs abated within 1-5 days for most animals, although they persisted intermittently for 16 days in the index case. Fecal RNA shedding persisted for as long as 35 days beyond cessation of respiratory signs. This case series describes the clinical presentation, diagnostic evaluation, and management of tigers and lions infected with SARS-CoV-2 and describes the duration of viral RNA fecal shedding in these cases. This report documents the first known natural transmission of SARS-CoV-2 from humans to nondomestic felids.


Assuntos
COVID-19/veterinária , Fezes/virologia , Leões/virologia , SARS-CoV-2 , Tigres/virologia , Animais , Animais de Zoológico , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/transmissão , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Cidade de Nova Iorque/epidemiologia , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação
8.
Open Vet J ; 10(2): 164-177, 2020 08.
Artigo em Inglês | MEDLINE | ID: covidwho-724486

RESUMO

Viruses are having great time as they seem to have bogged humans down. Severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and novel coronavirus (COVID-19) are the three major coronaviruses of present-day global human and animal health concern. COVID-19 caused by SARS-CoV-2 is identified as the newest disease, presumably of bat origin. Different theories on the evolution of viruses are in circulation, yet there is no denying the fact that the animal source is the skeleton. The whole world is witnessing the terror of the COVID-19 pandemic that is following the same path of SARS and MERS, and seems to be more severe. In addition to humans, several species of animals are reported to have been infected with these life-threatening viruses. The possible routes of transmission and their zoonotic potentialities are the subjects of intense research. This review article aims to overview the link of all these three deadly coronaviruses among animals along with their phylogenic evolution and cross-species transmission. This is essential since animals as pets or food are said to pose some risk, and their better understanding is a must in order to prepare a possible plan for future havoc in both human and animal health. Although COVID-19 is causing a human health hazard globally, its reporting in animals are limited compared to SARS and MERS. Non-human primates and carnivores are most susceptible to SARS-coronavirus and SARS-CoV-2, respectively, whereas the dromedary camel is susceptible to MERS-coronavirus. Phylogenetically, the trio viruses are reported to have originated from bats and have special capacity to undergo mutation and genomic recombination in order to infect humans through its reservoir or replication host. However, it is difficult to analyze how the genomic pattern of coronaviruses occurs. Thus, increased possibility of new virus-variants infecting humans and animals in the upcoming days seems to be the biggest challenge for the future of the world. One health approach is portrayed as our best way ahead, and understanding the animal dimension will go a long way in formulating such preparedness plans.


Assuntos
Betacoronavirus/classificação , Infecções por Coronavirus/veterinária , Coronavírus da Síndrome Respiratória do Oriente Médio/classificação , Pandemias/veterinária , Pneumonia Viral/veterinária , Síndrome Respiratória Aguda Grave/veterinária , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/classificação , Animais , Animais Selvagens , Betacoronavirus/genética , COVID-19 , Camelídeos Americanos/virologia , Camelus/virologia , Gatos , Quirópteros/virologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/transmissão , Suscetibilidade a Doenças/veterinária , Cães , Eutérios/virologia , Furões/virologia , Humanos , Leões/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Filogenia , Pneumonia Viral/imunologia , Pneumonia Viral/transmissão , Primatas/virologia , Cães Guaxinins/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/transmissão , Serpentes/virologia , Tigres/virologia , Viverridae/virologia
9.
Vet Q ; 40(1): 169-182, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-244904

RESUMO

Coronavirus disease 2019 (COVID-19), has spread over 210 countries and territories beyond China shortly. On February 29, 2020, the World Health Organization (WHO) denoted it in a high-risk category, and on March 11, 2020, this virus was designated pandemic, after its declaration being a Public Health International Emergency on January 30, 2020. World over high efforts are being made to counter and contain this virus. The COVID-19 outbreak once again proves the potential of the animal-human interface to act as the primary source of emerging zoonotic diseases. Even though the circumstantial evidence suggests the possibility of an initial zoonotic emergence, it is too early to confirm the role of intermediate hosts such as snakes, pangolins, turtles, and other wild animals in the origin of SARS-CoV-2, in addition to bats, the natural hosts of multiple coronaviruses such as SARS-CoV and MERS-CoV. The lessons learned from past episodes of MERS-CoV and SARS-CoV are being exploited to retort this virus. Best efforts are being taken up by worldwide nations to implement effective diagnosis, strict vigilance, heightened surveillance, and monitoring, along with adopting appropriate preventive and control strategies. Identifying the possible zoonotic emergence and the exact mechanism responsible for its initial transmission will help us to design and implement appropriate preventive barriers against the further transmission of SARS-CoV-2. This review discusses in brief about the COVID-19/SARS-CoV-2 with a particular focus on the role of animals, the veterinary and associated zoonotic links along with prevention and control strategies based on One-health approaches.


Assuntos
Betacoronavirus/classificação , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/veterinária , Reservatórios de Doenças/virologia , Saúde Única , Pandemias/veterinária , Pneumonia Viral/transmissão , Pneumonia Viral/veterinária , Zoonoses/transmissão , Animais , Betacoronavirus/patogenicidade , COVID-19 , Camelus , Gatos , Quirópteros , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Cães , Eutérios , Furões , Humanos , Macaca mulatta , Modelos Animais , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pneumonia Viral/virologia , SARS-CoV-2 , Serpentes , Tigres , Vacinas Virais , Eliminação de Partículas Virais , Viverridae , Organização Mundial da Saúde , Zoonoses/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA